8 research outputs found

    A practical degradation based method to predict long-term moisture incursion and colour change in high power LEDs

    Get PDF
    The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs under varying conditions of relative humidity, a humidity based degradation model (HBDM) is developed. A practical estimation method from the degradation behaviour is proposed to quantitatively gauge the effect of moisture incursion by means of a humidity index. This index demonstrates a high correlation with the color shift indicated by the LED's yellow to blue output intensity ratio. Physical analyses of the LEDs provide a qualitative validation of the model, which provides good accuracy with longer periods of moisture exposure. The results demonstrate that the HBDM is an effective indicator to predict the extent of the long-term impact of humidity and associated relative color shift

    Thermal management and humidity based prognostics of high-power LED packages

    Get PDF
    While Light Emitting Diodes (LEDs) hold much potential as the future of lighting, the high junction temperatures generated during usage result in higher than expected degradation rates and premature failures ahead of the expected lifetime. This problem is especially under-addressed under conditions of high humidity, where there has been limited studies and standards to manage humidity based usage. This research provides an analysis of the factors that contribute to high junction temperatures and suggests prognostic techniques to aid in LED thermal management, specifically under humidity stress. First, this research investigates the effects of current, temperature and humidity on the electrical-optical-thermal (EOT) properties. Temperature rises within an LED because of input stressors which cause heat to build up: the input current, the operating and ambient temperature, and the relative humidity of the environment. Not only is there an accumulation of heat due to these factors that alter the thermal properties, but the electrical and optical characteristics are changed as well. By uncovering specific configurations causing the EOT performance to degrade under stress, better thermal management techniques can be employed. Second, this research proceeds to quantitatively link the EOT performance degradation to the humidity causal factor. The recent proliferation of LED usage in regions with high humidity has not corresponded with sufficient studies and standards governing LED test and usage under the humidity stressor. This has led to indeterminate use and consequentially, a lack of understanding of humidity based failures. A novel humidity based degradation model (HBDM) is successfully developed to gauge the impact of the humidity stressor by means of an index which is shown to be an effective predictor of colour degradation. This prognostication of the colour shift by the HBDM provides both academia and industry not only with an indicator of the physical degradation but also an assessment of the LED yellow-blue colour rendering stability, a critical application criterion. Using the HBDM parameters as indicators of the state of the LED, the degradation study is expanded in the development of a Distance Measure approach to isolate degraded samples exceeding a specified multivariate boundary. The HBDM and Distance Measure approach serve as powerful prognostic techniques in overall LED thermal management

    Implications of phosphor coating on the thermal characteristics of phosphor-converted white LEDs

    Get PDF
    The phosphor layer in phosphor-converted white Light Emitting Diodes (pcLEDs) affects their optical and thermal performances. This paper reports the effects of phosphor thickness and particle concentration on the optical efficiency and temperature rise on conformal phosphor-coated LED package. It is observed that a thicker phosphor layer and a higher phosphor particle concentration will increase the amount of backscattering and back reflection of light from the phosphor layer. These light extraction losses not only reduce the optical efficiency of the light output but also cause heat accumulation in the phosphor layer, leading to higher LED junction temperature. At 2700 K correlated colour temperature (CCT), the temperature rise is observed to increase by as much as 2.6 times as compared to its blue emitting LED package. However, the self-heating effect can be reduced through its die-bonding configuration. Structure function-based thermal evaluation shows heat accumulation in the phosphor layer and that flip-chip bonding can dissipate the heat generated in the GaN LED and phosphor layer effectively. Evidence in this study demonstrates that optical efficiency and thermal resistance of pcLEDs are dependent on the CCT ratings

    On the Vlasov-Fokker-Planck-equation

    Get PDF
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Effect of packaging architecture on the optical and thermal performances of high-power light emitting diodes

    No full text
    The phosphor and die bonding configuration affect the optical efficiency and thermal performance in phosphor-coated white LEDs. In this paper, light emission studies reveal that the chromaticity shift and light extraction losses depend on the uniformity of phosphor particles deposited over the LED surface. A non-uniform and sparse phosphor layer affects the correlated color temperature (CCT) and the spectral Y-B ratio due to the disproportionate contribution of light emission between the LED device and the phosphor layer. Furthermore, the Y-B ratio was observed to reduce with temperature due to higher Stoke's energy and light extraction losses in the phosphor layer. As a result, the Y-B ratio exhibits an inverse relationship with the package's thermal resistance as a function of temperature. On the other hand, the thermal performance of a LED package is dependent on the die-bonding configurations (conventional and flip-chip). Due to the improved heat dissipation capabilities in flip-chip bonding, the temperature rise and thermal resistance of the package was observed to reduce with temperature. By alleviating the heat accumulation in the package, more stable colorimetric properties such as CCT and Y-B ratio can be achieved

    Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults † †This Article is accompanied by Editorials aev298 and aev404.

    No full text
    corecore